Interfacial stability and shape change of anisotropic endoskeleton droplets.

نویسندگان

  • Marco Caggioni
  • Alexandra V Bayles
  • Jessica Lenis
  • Eric M Furst
  • Patrick T Spicer
چکیده

The delivery of suspended active ingredients to a surface is a central function of numerous commercial cosmetic, drug, and agricultural formulations. Many products use liquid droplets as a delivery vehicle but, because interfacial tension keeps droplets spherical, these materials cannot exploit the benefits of anisotropic shape and shape change offered by solid colloids. In this work, individual droplet manipulation is used to produce viscoelastic droplets that can stably retain non-spherical shapes by balancing the Laplace pressure of the liquid-liquid interface with the elasticity of an internal crystalline network. A stability criterion is developed for idealized spherocylindrical droplets and shown to agree with experimental data for varying droplet size and rheology. Shape change can be induced in the anisotropic droplets by upsetting the balance of droplet interfacial tension and internal rheology. Using dilution to increase the interfacial tension shows that external stimuli can trigger collapse and shape change in these droplets. The droplets wrap around substrates during collapse, improving contact and adhesion. The model is used to develop design criteria for production of droplets with tunable response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-Induced Collapse, and Arrested Collapse, of Anisotropic Endoskeleton Droplets.

Micron-scale rod-shaped droplets with a range of aspect ratios are produced using extrusion of oil containing a soft wax crystal network to permit shape customization. A physical model of the droplet shape stability is developed based on balancing interfacial stresses with the internal crystal network yield stress. The model predicts the mechanical properties required for particular droplet siz...

متن کامل

Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the mo...

متن کامل

BslA-stabilized emulsion droplets with designed microstructure

Emulsions are a central component of many modern formulations in food, pharmaceuticals, agrichemicals and personal care products. The droplets in these formulations are limited to being spherical as a consequence of the interfacial tension between the dispersed phase and continuous phase. The ability to control emulsion droplet morphology and stabilize non-spherical droplets would enable the mo...

متن کامل

Timescales of emulsion formation caused by anisotropic particles.

Particle stabilized emulsions have received much interest in the recent past, but our understanding of the dynamics of emulsion formation is still limited. For simple spherical particles, the time dependent growth of fluid domains is dominated by the formation of droplets, particle adsorption and coalescence of droplets (Ostwald ripening), which eventually can be almost fully blocked due to the...

متن کامل

C3sm53186d 4977..4989

Particle stabilized emulsions have received much interest in the recent past, but our understanding of the dynamics of emulsion formation is still limited. For simple spherical particles, the time dependent growth of fluid domains is dominated by the formation of droplets, particle adsorption and coalescence of droplets (Ostwald ripening), which eventually can be almost fully blocked due to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 38  شماره 

صفحات  -

تاریخ انتشار 2014